GIS Approach for Groundwater Quality Study in Mewat District, Haryana, India

Rajvir Singh, Anup Kumar, S.K. Chakarvarti

Abstract—Water is prime requirement for living beings. The availability of good quality groundwater plays vital role in developmental planning as well as agricultural practices. The modern techniques like geographical information system (GIS) are employing for studying the spatial distribution of groundwater in a terrain. In the present study, secondary groundwater quality data have been used for groundwater quality study of Mewat district in Haryana. Ten groundwater quality parameters viz. pH, alkalinity, calcium, magnesium, hardness, total dissolved solids, iron, fluoride, chloride and nitrate have been used for inverse distance weighted interpolation technique in ArcGIS 9.3 software of 45 locations in the district. The result shows that pH in the study area ranges 6.5 to 8. The spatial distribution of pH shows that 1634.68 sq. km area (87.93%) falls under desirable groundwater quality. Hills cover 224.32 sq. km area (12.07%) in the study area. The alkalinity in the study area ranges 90 mg/l to 1400mg/l. The spatial distribution of alkalinity in the study area shows that 1525.77 sq. km area (82.07%) falls under desirable groundwater quality; 43.04 sq.km. area (2.32%) area falls under permissible groundwater quality and 65.87 sq.km area (3.54%) falls under non-potable groundwater quality. The calcium in the study area ranges 24 mg/l to 800 mg/l. The spatial distribution of calcium in the study area shows that 1153.33 sq. km area (62.04%) falls under desirable groundwater quality; 454.84 sq.km. area (24.47%) area falls under permissible groundwater quality and 26.51 sq.km area (1.43%) falls under non-potable groundwater quality. The magnesium in the study area ranges 10 mg/l to 300 mg/l. The spatial distribution of magnesium in the study area shows that 106.51 sq. km area (5.73%) falls under desirable groundwater quality; 1528.17 sq.km area (82.20%) area falls under permissible groundwater quality and 224.32 sq.km area (12.07%) falls under non-potable groundwater quality. The hardness in the study area ranges 190 mg/l to 1660 mg/l. The spatial distribution of hardness in the study area shows that 11.41sq. km area (0.61%) falls under desirable groundwater quality; 1574.22 sq.km. area (84.68%) area falls under permissible groundwater quality and 49.05 sq.km area (2.64%) falls under non-potable groundwater quality. The total dissolved solids (TDS) in the study area ranges 156 mg/l to 2500 mg/l. The spatial distribution of total dissolved solids (TDS) in the study area shows that 353.67 sq. km area (19.02%) falls under desirable groundwater quality; 1269.52 sq.km area (68.29%) area falls under permissible groundwater quality and 11.49 sq.km. area (0.62%) falls under non-potable groundwater quality. The chloride in the study area ranges 92 mg/l to 1600 mg/l. The spatial distribution of chloride in the study area shows that 571.3 sq. km area (30.74%) falls under desirable groundwater quality; 1055.54 sq.km. area (56.78%) area falls under permissible groundwater quality; 1055.54 sq.km. area (56.78%) area falls under permissible groundwater quality; 1055.54 sq.km. area (56.78%) area falls under permissible groundwater quality; 1055.54 sq.km. area (56.78%) area falls under permissible groundwater quality; 1055.54 sq.km. area (56.78%) area falls under permissible groundwater quality; 1055.54 sq.km. area (56.78%) area falls under permissible groundwater quality; 1055.54 sq.km. area (56.78%) area falls under permissible groundwater quality; 1055.54 sq.km. area (56.78%) area falls under permissible groundwater quality; ter quality and 7.61 sq.km area (0.41%) falls under non-potable groundwater quality. The fluoride in the study area ranges 0.27 mg/l to 1.6 mg/l. The spatial distribution of fluoride in the study area shows that 1264.81 sq. km area (68.03%) falls under desirable groundwater quality; 365.66 sq.km area (19.67%) area falls under permissible groundwater quality and 4.21sq.km area (0.23%) falls under non-potable groundwater quality. The iron in the study area ranges 0.27 mg/l to 1.6 mg/l. The spatial distribution of iron in the study area shows that 1554.19 sq. km area (83.60%) falls under desirable groundwater quality; 80.49 sq.km area (4.33%) area falls under permissible groundwater quality. Hills cover 224.32 sq. km area (12.07%) in the study area. The nitrate in the study area ranges 10 mg/l to 30 mg/l. The spatial distribution of nitrate in the study area shows that 1634.68 sq. km area (87.93%) falls under desirable groundwater quality. Hills cover 224.32 sq. km area (12.07%) in the study area. The study shows that pH and nitrate fall under desirable limit in the study area, iron falls under desirable and permissible limit while other parameters-alkalinity, calcium, magnesium, hardness, total dissolved solids, chloride and fluoride fall in desirable, permissible and non-potable limit of groundwater in the study area. The study is highly useful for planning and management of groundwater in the study area.

Key words-Geoinformatics, GIS, groundwater, IDW, interpolation, quality, Mewat, Haryana

1 INTRODUCTION

WATER is one of the most requirement for sustainability of life on Earth. Though, the availability of water is plenty on the planet earth, but the availability of fresh useable groundwater is very less. It is necessary to have information of water quality especially groundwater quality for development of agricultural practices and other developmental activities. The geographical information system (GIS) is the effective tool to represent data in spatial and non-spatial form which help in representing and understanding the scenario of particular parameters in an area. Many workers [1, 2, 3, 4, 5, 6, 9] have done good work on groundwater quality using geographical information system (GIS).

2 STUDY AREA

The study area, Mewat district is situated in the southern part of Haryana state. The geo-coordinates of the district are 27° 39'N to 28° 20' N latitudes and 76° 51' E to 77° 20' E longitudes and covering 1859 sq.km area (Fig.1). The district has undulating topography of hills, valleys, pediments, palaeochannels, obstacle sand dunes and plains. The climate of the district is semi-arid type and normal rainfall is 594 mm.

Rajvir Singh, Research Scholar, Manav Rachana International University, Faridabad, Haryana, India, E-mail: rvsingh64@gmail.com

Anup Kumar, Haryana Space Applications Centre (HARSAC), CCS HAU Campus, Hisar-125004, Haryana, India, E-mail: anup0106@yahoo.com

S.K. Chakarvarti, Professor, Advisor Research, and Publications,, Manav Rachana International University, Faridabad, Haryana, India, E-mail:skchakarvarti@gmail.com

Fig.1. Location map of the study area

MATERIALS AND METHODOLOGY

Secondary groundwater quality data of 45 locations of Mewat district for the years July 2014 and June 2015 have been downloaded from MDWSD website [7] (Table 1). Ten groundwater quality parameters include pH, alkalinity, calcium, magnesium, hardness, total dissolved solids, iron, fluoride, chloride and nitrate. The data have been put in ArcGIS 9.3 software and inverse distance weighted interpolation technique have been ap

plied. The interpolated data have been classified in three classes as per IS 10500:2012 drinking water standards [8] (Table 2) and prepared the parameter wise groundwater quality maps of the study area. The area of each drinking water class for each parameter has been calculated in the ArcGIS software.

TABLE 1 GROUNDWATER QUALITY DATA (SOURCE: NRDWP, MDWS, GOVT.OF INDIA)

Lecutor	Scaple Duis	1.0	Albels alcy (mp?)	Calcie a Ing T	Magar Case Log 5	Hords mi (mg%)	TDS (mg/t)	See. (Mg/b)	Plantide (ing %)	Chiesi dejagi li	Nexe (egt)
Tephna	20-02-2017	14		.72	32	300	112	0.04	18.41	227	36
thekigur -	10122054	1.1	1170	45	41	340	1376		1.5	182	
Unigor	1732064	7.4	110	54	18	180	417		17.	342	
Unimplie	20102-0021	.12	1.70	80	- 29	340	428	0.04	2.62	210	+.
Karij	14/07/2014	1.1	1400	348	145	1280	2500	11	1.40	1048	
Rangels	15/07/2004	7	100	140	31	2.90	+00	0.2	1.20	1.20	
Pulki	2010/0017	T4.	- A	- 84	34	110	340	0.82	0.34	103	10
Perkinet	1949/2014	. 12	1997	. 84	10	240	291		- 1 · · ·	142	14.0
Pain	20102/2017	73		80	82	240	877	0.04	2.73	210	4.7
Pole	26402665	13		10	29	#30	475	0.02	1.21	112	40.
Feda Stalight	10470014	28	340	40	31	210	418		+	140	
Nakken	14/05/2011	4.7	1.20	14	.04	140	3274		1	1.748	
Mariji	14450615	4.1	1200	4010	990	1000	1500	1.9	1.60	1400	- 041
Natgol Tasique	394023017	7.4		40	- 43	300	400	0.78	1.28	- 245	10
Mulanoandorger	20102/2015	7.0		44	- 54	108	403	0.11	1.41	134	1.2
Station	10000000	78			12	300	316	0.21	837	140	12
Marki	20-02-06L1	1.11	1.30		34	240	340	6.04	1.74	131	
Manifalant	20-02-2017	1.1.4		. 10		190	470	0.09	1.54	411	1.9
Nuine	24/01/2011	. 7	140	- 44	34	270	108		1	140	
Malamia .	12/05/2015	5.7	312	24	48	240	401		-	176	
Exte	20/02/2017	. 9		121	41	590	3440	0.04	9.27	734	1.5
Charle Silver#	11.07 2014	4.9	470	173	41	400	1100	6.1	2.4	134	1.1
Elade	17122004	1.8	1,200	40	1.12	432	2500	6.25	1.80	1400	1.141
Caroli	2010/0015	4.5	90	134	74	600	1275	0.08	141	344	
Cassing in	09-05/2015	. 7	412	- 348	42	3.70	#00	0.22	5.20	328	
Assesses.	29-01/2011	7.4	1.30	+0	41	290	· 30*	0.09	0.04	278	
Terret	26/11/2014	5		- 46	17	190	379	0.10	4.34	148	13
Gasternes .	1405/2007	. 8	220	12	77	+02	1279	-	1	7.10	
Gare lineareted	11080004	1.13	340	- 49	41	190	. 467		1	178	
Ganera	20-02-2015	1.4		24	38	370	480	6.00	8.47	179	30.
Glaggion	20102/2017	1.1	100	200	38	290	400		1.34	104	.+.
Publisher Elect	2040-2015	7.8		34	4	260	156	0.0	1.27	128	15
Clauberer	20122-2014	4.2			43	300	408	0.06	827	. 108	20
Caled	24852883	13		. 36	-+4	2990	470	6.04	8.67	210	12
Otherapy .	12(2:20)+	1.13	4	- 44	()	290	472	1.0	8.45	86	10
Chdeveli	23/07/2014		- 19	34	38.	240	400	0.11	0.16	82	17
Borna .	45-942015	-6.7	480	40	113	400	1796.	1.4	11	640	*
Bires Alhapu	20/07/2014	.71	130	28	22	280	445	0.04	0.41	242	
Biers.	23/07/0614	-24	140	104		180	1275	0.30		487	38
Raind	45-04-2017		200	140	- 23	240	305	0.28	1.20	200	+
Riskoup	62-04/3011				+			0.82			. 20
Rieles	20-82-2017	. 12	139			309	345		1,92	104	+
Bai .	00-06/2017	13	310	124	80	100	1300	0.28	1.3	240	
Bolar	00.94/2013		- A.			1.4		0.1	· · · ·	1.1	30
Auclewari	00-04/2017		120	- 40	21	270	367		1	277	-

TABLE 2 DRINKING WATER PARAMETERS (IS 10500:2012)

Parameter	Desirable	Permissible	Non- potable
pH	6.5-8.5	-	-
Alkalinity (mg/l)	< 200	200-600	> 600
Calcium (mg/l)	< 75	75-200	> 200
Magnesium (mg/l)	< 30	-	> 30
Hardness (mg/l)	< 200	200-600	> 600
TDS (mg/l)	< 500	500-2000	> 2000
Chloride (mg/l)	< 250	250-1000	> 1000
Fluoride (mg/l)	< 1	1-1.5	> 1.5
Nitrate (mg/l)	< 45	-	> 45
Iron (mg/l)	< 0.3	-	> 0.3

3 RESULTS AND DISCUSSION

i. pH

The pH in the study area ranges 6.5 to 8. The spatial distribution of pH in the study area shows that 1634.68 sq. km area (87.93%) falls under desirable groundwater quality. Hills cover 224.32 sq. km area (12.07%) in the study area (Fig. 2 and Table 3). As per IS 10500:2012 drinking water standards (Table 2) pH 6.5 to 8.5 falls under desirable groundwater quality and no relaxation below and above these limits.

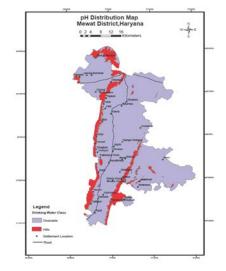


Fig.2.Spatial distribution of pH in Mewat District

TABLE 3
AREA OF DIFFERENT DRINKING WATER CLASSES OF
pH IN THE STUDY AREA

рН	Area (Sq. Km)	% of Total
Drinking Water Class		Area
Desirable	1634.68	87.93
Permissible	-	-
Non-potable	-	-
Hills	224.32	12.07
Total	1859.00	100.00

ii. Alkalinity

ł

The alkalinity the study area ranges 90 mg/l to 1400mg/l. The spatial distribution of alkalinity in the study area shows that 1525.77 sq. km area (82.07%) falls under desirable groundwater quality; 43.04 sq.km. area (2.32%) area falls under permissible groundwater quality and 65.87 sq.km area (3.54%) falls under non-potable groundwater quality. Hills cover 224.32 sq. km area (12.07%) in the study area (Fig.3 and Table 4). As per IS 10500:2012 drinking water standards (Table 2) alkalinity less than 200 mg/l desirable; 200-600 mg/l permissible and more than 600 mg/l non-potable groundwater quality.

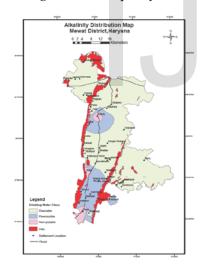


Fig.3. Spatial distribution of alkalinity in Mewat District

TABLE 4
AREA OF DIFFERENT DRINKING WATER CLASSES OF
ALKALINITY IN THE STUDY AREA

Alkalinity	Area (Sq. Km)	% of Total	
Drinking Water Class		Area	
Desirable	1525.77	82.07	
Permissible	43.04	2.32	
Non-potable	65.87	3.54	
Hills	224.32	12.07	
Total	1859.00	100.00	

iii. Calcium

The calcium in the study area ranges 24 mg/l to 800 mg/l. The spatial distribution of calcium in the study area shows that 1153.33 sq. km area (62.04%) falls under desirable groundwater quality; 454.84 sq.km. area (24.47%) area falls under permissible groundwater quality and 26.51 sq.km. area (1.43%) falls under non-potable ground-groundwater quality. Hills cover 224.32 sq. km area (12.07%) in the study area (Fig. 4 and Table 5). As per IS 10500:2012 drinking water standards (Table 2) calcium less than 75 mg/l desirable; 75-200 mg/l permissible and more than 200 mg/l non-potable groundwater quality.

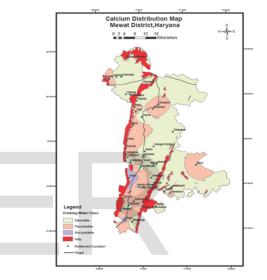


Fig.4. Spatial distribution of calcium in Mewat District

TABLE 5 AREA OF DIFFERENT DRINKING WATER CLASSES OF CALCIUM IN THE STUDY AREA

Calcium (Ca)	Area (Sq. Km)	% of Total
Drinking Water Class	_	Area
Desirable	1153.33	62.04
Permissible	454.84	24.47
Non-potable	26.51	1.43
Hills	224.32	12.07
Total	1859.00	100.00

iv. Magnesium

The magnesium in the study area ranges 10 mg/l to 300 mg/l. The spatial distribution of magnesium in the study area shows that 106.51 sq. km area (5.73%) falls under desirable groundwater quality; 1528.17 sq.km. area (82.20%) area falls under permissible groundwater quality and 224.32 sq.km. area (12.07%) falls under non-potable groundwater quality. Hills cover 224.32 sq. km area (12.07%) in the study area (Fig.5 and Table 6). As per IS 10500:2012 drinking water standards (Table 2) magnesium less than 30 mg/l desirable and no relaxation for more than 30 mg/l.

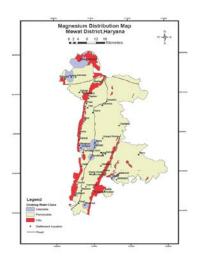


Fig.5. Spatial distribution of magnesium in Mewat District

TABLE 6 AREA OF DIFFERENT DRINKING WATER CLASSES OF MAGNESIUM IN THE STUDY AREA

Magnesium (Mg)	Area (Sq. Km)	% of Total
Drinking Water Class		Area
Desirable	106.51	5.73
Permissible	1528.17	82.20
Non-potable		
Hills	224.32	12.07
Total	1859.00	100.00

v. Hardness

The hardness in the study area ranges 190 mg/l to 1660 mg/l. The spatial distribution of hardness in the study area shows that 11.41sq. km area (0.61%) falls under desirable groundwater quality; 1574.22 sq.km. area (84.68%) area falls under permissible groundwater quality and 49.05 sq.km. area (2.64%) falls under non-potable groundwater quality. Hills cover 224.32 sq. km area (12.07%) in the study area (Fig. 6 and Table 7). As per IS 10500:2012 drinking water standards (Table 2) hardness less than 200 mg/l desirable; 200-600 mg/l permissible and more than 600 mg/l non-potable groundwater quality.

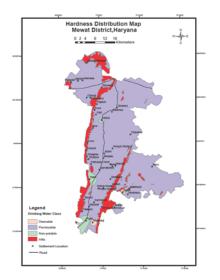


Fig.6: Spatial distribution of Hardness in Mewat District

TABLE 7 AREA OF DIFFERENT DRINKING WATER CLASSES OF HARDNESS IN THE STUDY AREA

Hardness	Area (Sq. Km)	% of Total	
Drinking Water Class		Area	
Desirable	11.41	0.61	
Permissible	1574.22	84.68	
Non-potable	49.05	2.64	
Hills	224.32	12.07	
Total	1859.00	100.00	

vi. Total dissolved solids (TDS)

The total dissolved solids (TDS) in the study area ranges 156 mg/l to 2500 mg/l. The spatial distribution of total dissolved solids (TDS) in the study area shows that 353.67 sq. km area (19.02%) falls under desirable groundwater quality; 1269.52 sq.km. area (68.29%) area falls under permissible groundwater quality and 11.49 sq.km. area (0.62%) falls under non-potable groundwater quality. Hills cover 224.32 sq. km area (12.07%) in the study area (Fig. 7 and Table 8). As per IS 10500:2012 drinking water standards (Table 2) total dissolved solids (TDS) less than 500 mg/l desirable; 500-2000 mg/l permissible and more than 2000 mg/l non-potable groundwater quality.



Fig.7: Spatial distribution of Total Dissolved Solids in Mewat District

TABLE 8 AREA OF DIFFERENT DRINKING WATER CLASSES OF TOTAL DISSOLVED SOLIDS IN THE STUDY AREA

Total Dissolved Solids(TDS) Drinking Water Class	Area (Sq. Km)	% of Total Area
Desirable	353.67	19.02
Permissible	1269.52	68.29
Non-potable	11.49	0.62
Hills	224.32	12.07
Total	1859.00	100.00

vii. Chloride

The chloride in the study area ranges 92 mg/l to 1600 mg/l. The spatial distribution of chloride in the study area shows that 571.3 sq. km area (30.74%) falls under desirable groundwater quality; 1055.54 sq.km. area (56.78%) area falls under permissible groundwater quality and 7.61 sq.km. area (0.41%) falls under non-potable groundwater quality. Hills cover 224.32 sq. km area (12.07%) in the study area (Fig. 8 and Table 9). As per IS 10500:2012 drinking water standards (Table 2) chloride less than 250 mg/l desirable; 250-1000 mg/l permissible and more than 1000 mg/l non-potable groundwater quality.

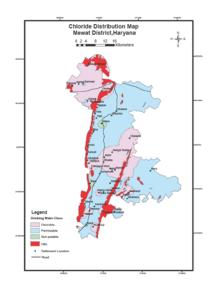


Fig.8. Spatial distribution of chloride in Mewat District

TABLE 9 AREA OF DIFFERENT DRINKING WATER CLASSES OF CHLORIDE IN THE STUDY AREA

Chloride (Cl)		Area (Sq. Km)	% of Total
Drinking	Water		Area
Class			
Desirable		571.53	30.74
Permissible		1055.54	56.78
Non-potable		7.61	0.41
Hills		224.32	12.07
Total		1859.00	100.00

viii. Fluoride

The fluoride in the study area ranges 0.27 mg/l to 1.6 mg/l. The spatial distribution of fluoride in the study area shows that 1264.81 sq. km area (68.03%) falls under desirable groundwater quality; 365.66 sq.km area (19.67%) area falls under permissible groundwater quality and 4.21sq.km. area (0.23%) falls under non-potable groundwater quality. Hills cover 224.32 sq. km area (12.07%) in the study area (Fig. 9 and Table 10). As per IS 10500:2012 drinking water standards (Table 2) fluoride less than 1mg/l desirable; 1-1.5 mg/l permissible and more than 1.5 mg/l non-potable groundwater quality.

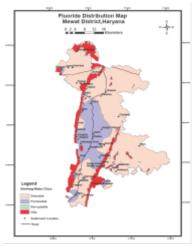


Fig.9. Spatial distribution of fluoride in Mewat District

TABLE 10 AREA OF DIFFERENT DRINKING WATER CLASSES OF FLUORIDE IN THE STUDY AREA

Fluoride (F)	Area (Sq. Km)	% of Total
Drinking Water Class		Area
Desirable	1264.81	68.03
Permissible	365.66	19.67
Non-potable	4.21	0.23
Hills	224.32	12.07
Total	1859.00	100.00

ix. Iron

The iron in the study area ranges 0.27 mg/l to 1.6 mg/l. The spatial distribution of iron in the study area shows that 1554.19 sq. km area (83.60%) falls under desirable groundwater quality; 80.49 sq.km. area (4.33%) area falls under permissible groundwater quality. Hills cover 224.32 sq. km area (12.07%) in the study area (Fig. 10 and Table 11). As per IS 10500:2012 drinking water standards (Table 2) fluoride less than 0,3mg/l desirable and more than 0.3mg/l non-potable groundwater quality.

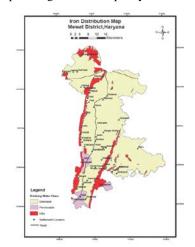


Fig.10. Spatial distribution of iron in Mewat District

TABLE 11 AREA OF DIFFERENT DRINKING WATER CLASSES OF IRON IN THE STUDY AREA

Iron (Fe) Drinking Class	Water	Area (Sq. Km)	% of Total Area
Desirable		1554.19	83.60
Permissible		80.49	4.33
Non-potable			
Hills		224.32	12.07
Total		1859.00	100.00

x. Nitrate

The nitrate in the study area ranges 10 mg/l to 30 mg/l. The spatial distribution of nitrate in the study area shows that 1634.68 sq. km area (87.93%) falls under desirable groundwater quality. Hills cover 224.32 sq. km area (12.07%) in the study area (Fig.11 and Table 12). As per IS 10500:2012 drinking water standards (Table 2) fluoride less than 45mg/l desirable and more than 45 mg/l non-potable groundwater quality.

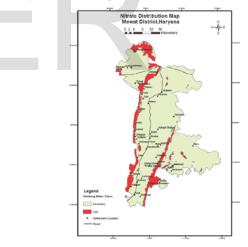


Fig.10. Spatial distribution of nitrate in Mewat District

		TABLE 12			
AREA OF D	IFFERENT	DRINKING	WATER	CLASSES	OF
NITRATE IN THE STUDY AREA					

Nitrate (NO3) Drinking Water Class	Area (Sq. Km)	% of Total Area
Desirable	1634.68	87.93
Permissible		
Non-potable		
Hills	224.32	12.07
Total	1859.00	100.00

International Journal of Scientific & Engineering Research, Volume 6, Issue 9, September-2015 ISSN 2229-5518

4 CONCLUSIONS

In the study area, pH and nitrate fall under desirable limit; iron falls under desirable and permissible limits while alkalinity, calcium, magnesium, hardness, total dissolved solids, chloride and fluoride fall under desirable, permissible and non-potable limits of drinking water classes in the study area. The study is highly useful for planning and management of groundwater in the study area.

ACKNOWLEDGEMENTS

Authors acknowledge the National Rural Drinking Water Programme (NRDWP), Ministry of Drinking Water Supply and Sanitation (MDWS), Govt. of India for taking groundwater quality data of Mewat District, Haryana (July 2014 to June 2015) in this study.

REFERENCES

[1] Anil, F.,Dhobale, N.S.,Jain, and Shivaji Govind,Patil, "Utility of geoinformatics in watershed management and water quality analysis for North-East Region of Pune District", Int. J. Scientific & Engineering Research, vol.5, issue 6, pp.1256-1260, 2014.

- [2] B. Mahalingam, Bhauso, Ramu, Deepali, Magdum and P. Jayashree, "Assessment of groundwater quality using GIS techniques: a case study of Mysore City", Int.J. Engineering and Innovative Technology, vol. 3, issue 8, pp.117-122, 2014.
- [3] S. Somvanshi, P. Kunwar, N.B.Singh, S.P.Shukla, and V.Pathak, "Itegrated remote sensing and GIS approach for water quality analysis of Gomti river, Uttar Pradesh", Int.J. Environmental Sciences, vol.3, no 1, pp.62-74, 2012.
- [4] Milisav Tomic, "The use of methods of remote sensing and GIS applications in monitoring water quality on the example of the mining basin "Kolubara" Lazarevac", Geonauka, vol. 2, no.1, pp.1-8, 2014.
- [5] Norsaliza Usali and Mohd Hasmadi Ismail, "Use of remote sensing and GIS in monitorin water quality", J.Sustainable Devlopment, vol. 3, no.3, pp.228-238 ,2010.
- [6] Gogana Venkateswarlu, "Analytical study on effects of water quality parameters using remote sensing & GIS under Hyderbad urban area zone-V", Int. J.Research in Engineering and Technology, Vol. 03,issue 03,pp. 308-316, 2014.
- [7] www.mdws.gov.in
 - (http://indiawater.gov.in/imisreports/nrdwpmain.aspx)
- [8] www.bis.org.in
- [9] Zheng Zhou, Liangming, Liu and Yuanling, Zhao, "Design of the water quality monitoring system for inland lakes based on remote sensing data", Proc.3rd International Conference on Cartography and GIS, 15-20 June, 2010, Nessebar, Bulgaria (Conference Proceedings).